
 

 1 

Improving the joint estimation of CO2 and surface carbon fluxes using 
a Constrained Ensemble Kalman Filter in COLA (v1.0) 
Zhiqiang Liu1,2, Ning Zeng3,4,1, Yun Liu5,6, Eugenia Kalnay3, Ghassem Asrar7, Bo Wu1, Qixiang Cai1, Di 
Liu8, Pengfei Han9,1 

1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of 5 
Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 
2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China 
3Dept. of Atmospheric and Oceanic Science, University of Maryland – College Park, Maryland, USA 
4Earth System Science Interdisciplinary Center, University of Maryland, USA 
5International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Texas A&M University, College 10 
Station, Texas, USA 
6Dept. of Oceanography, Texas A & M University, College Station, TX, USA 
7Universities Space Research Association, Columbia, MD, USA 
8Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 
9Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 15 

Correspondence to: Zhiqiang Liu (liuzhiqiang@mail.iap.ac.cn) and Ning Zeng (zeng@umd.edu) 

Abstract. Atmospheric inversion of carbon dioxide (CO2) measurements to understand carbon sources and sinks has made 

great progress over the last two decades. However, most of the studies, including four-dimension variational (4D-Var), 

Ensemble Kalman filter (EnKF), and Bayesian synthesis approaches, obtains directly only fluxes while CO2 concentration is 

derived with the forward model as post-analysis. Kang et al. (2012) used the Local Ensemble Transform Kalman Filter (LETKF) 20 

that updates the CO2, surface carbon fluxes (SCF), and meteorology field simultaneously. Following this track, a system with 

a short assimilation window and a long observation window was developed (Liu et al., 2019). However, this system faces the 

challenge of maintaining global carbon mass. To overcome this shortcoming, here we introduce a Constrained Ensemble 

Kalman Filter (CEnKF) approach to ensure the conservation of global CO2 mass. After a standard LETKF procedure, an 

additional assimilation process is applied to adjust CO2 at each model grid point and to ensure the consistency between the 25 

analysis and the first guess of global CO2 mass. In the context of observing system simulation experiments (OSSEs), we show 

that the CEnKF can significantly reduce the annual global SCF bias from ~0.2 gigaton to less than 0.06 gigaton by comparing 

between experiments with and without it. Moreover, the annual bias over most continental regions is also reduced. At the 

seasonal scale, the improved system reduced the flux root-mean-square error from priori to analysis by 48-90%, depending on 

the continental region. Moreover, the 2015-2016 El Nino impact is well captured with anomalies mainly in the tropics.  30 

1 Introduction 

Carbon dioxide (CO2) plays a crucial role in climate system and its projected warming (Friedlingstein et al., 2006). About half 

of the fossil fuel and cement emissions are absorbed by the land and ocean, leaving the remaining half in the atmosphere 
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(Friedlingstein et al., 2019). Without effective reduction of those emissions and advanced technologies for carbon capture and 

storage, the warming trend may exceed the tipping point with potential adverse impacts on the health of environment, people, 35 

and global economy. Recently, many countries (e.g., Asian, European, and North and South American countries) announced 

their pledge for achieving carbon-neutral targets by middle of this century. To implement those national pledges successfully, 

accurate quantification of spatial and temporal dynamics of earth surface carbon fluxes (SCF) and closing the global carbon 

budget (GCB) are essential. There are two principal approaches for SCF estimation: top-down and bottom-up. The bottom-up 

estimates are obtained from the process-based or empirical carbon cycle models (Kondo et al., 2020; Zeng et al., 2005; Denning 40 

et al., 1996). However, there is still a “missing” or residual carbon sink to close the GCB with bottom-up approachs because 

of the limitation of our understanding of the natural carbon cycle and the lack of observations to validate the models globally. 

The top-down approach optimizes the SCF by fusing the atmospheric CO2 concentration measurements with the modeled CO2 

using the techniques such as Bayesian synthesis approach (e.g., Rodenbeck et al., 2003; Gurney et al., 2004), data assimilation 

such as Ensemble Kalman Filters (EnKF) (e.g., Peters et al., 2005, 2007; Feng et al., 2009; Zupanski et al., 2007; Lokupitiya 45 

et al., 2008; Bruhwiler et al., 2005) and variational methods (e.g., Baker et al., 2006; Basu et al., 2013; Chevallier et al., 2010; 

Liu et al., 2014). In recent decades, the global CO2 observation networks from surface to the air and space have provided large 

amounts of high precision atmospheric CO2 concentration data (Crevoisier et al., 2004; Crisp et al., 2017; Tans et al., 1990; 

Yang et al., 2018; Yokota et al., 2009), which greatly enhance the quality of top-down estimates.  

 50 

The CO2 is a long-lived tracer gas, so remote observations can play an important role in estimating the local SCF. Thus, most 

top-down systems do not localize the observations and set a very long assimilation window (AW) that range from several 

months to one year (Chevallier et al., 2010a; Peters et al., 2007; Rodenbeck et al., 2003; Liu et al., 2014) to compromise the 

sparse and unevenly distributed feature of our global CO2 observation network. However, the atmospheric transport model 

(ATM) generated atmosphere CO2 will deviate from Gaussian distribution with long AW. Both EnKF and variational methods 55 

use the linear hypothesis to constrain the system. To obtain the optimal assimilation, the forecast uncertainties are expected to 

remain or close to linear. It is very hard to hold the linear perspective with a long AW. Therefore, only the SCF is considered 

a valuable product, while CO2 concentration is derived with the forward model as post-analysis. 

 

Instead of treating the CO2 as a by-product of the inversion, Kang et al. (2011, 2012) developed a top-down carbon data 60 

assimilation system with a short AW (6 hours) to simultaneously estimate SCF and CO2 concentration. The system includes 

an online atmospheric general circulation model (AGCM) that the meteorological observations (wind, temperature, humidity, 

surface pressure) and CO2 concentration observations were assimilated simultaneously to account for the uncertainties of the 

meteorological field and their impact on the transport of atmospheric CO2. Following this effort, we have developed a LETKF-

based CO2 data assimilation system (LETKF_C) to generate meaningful CO2 analysis using a combination of a short AW (e.g., 65 

one day) and a long observation window (OW) (e.g., seven days) (Liu et al., 2019). The system replaces the GCM within Kang 

et al. (2011, 2012) as an ATM, GEOS-Chem, to reduce the computation cost and the uncertainties of the meteorological field. 
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In the context of the observing system simulation experiments (OSSE), both systems (Kang et al., 2012, 2011; Liu et al., 2019) 

successfully reproduced the global SCF seasonal cycle and annual SCF pattern at grid-point resolution without direct SCF 

priori information.  70 

 

A major concern for the two systems is the carbon mass conservation issue. Data assimilation (DA) systems use observations 

to constrain the model state statistically. The DA update process could not follow the model dynamic principle perfectly, hence, 

leading to a loss of mass and energy conservation and dynamic balances (Zeng et al., 2017). The impact of such imbalances 

could be reduced or eliminated by model dynamic adjustment in a short period, but the impact of additional mass gain or loss 75 

could last for a long time. For example, mass conservation is crucial for carbon-cycle and hydrological studies (Pan and Wood, 

2006). The LETKF_C system follows the same process as the DA process to update atmospheric CO2 directly using 

observation. Therefore, the carbon mass conservation will not hold within a DA cycle. To overcome this limitation, a 

Constrained Ensemble Kalman Filter (CEnKF) step has been applied to the newly developed Carbon of Ocean, Land, and 

Atmosphere data assimilation system (COLA) of version 1.0. The CEnKF was originally used in the hydrological field for 80 

data assimilation as a second constraining optimizer (Pan and Wood 2006). The basic concept for CEnKF is to constrain the 

global analysis mass back to the first guess. With the CEnKF added into the COLA system, we rebuild the carbon mass 

conservation and enhance the CO2 and SCFs estimation. 

 

This paper is organized as following: Section 2 briefly describes the global COLA system and CEnKF. Section 3 describes the 85 

OSSE experiments design. Section 4 present the results and analysis in the context of observing system simulation experiments 

(OSSE). Summary and discussion are presented in Section 5. 

2 Methods  

2.1 GEOS-Chem model 

COLA uses GEOS-Chem as the ATM to simulate the global atmospheric CO2 variation (Nassar et al., 2013). In this study, we 90 

use the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) (Gelaro et al., 2017)  

meteorology reanalysis to drive the version 13.0.2 of GEOS-Chem at 4o×5o horizontal resolution (native resolution of 

0.5o×0.625o) with 47 vertical levels (~30 levels below the stratosphere). The time step interval of GEOS-Chem is set as 30 

minutes for both chemical process and transport.  

 95 

Since the CO2 is a passive tracer in GEOS-Chem and our assimilation system does not consider the uncertainties of 

metrological reanalysis, we treated different CO2 ensemble members as different CO2 tracers in GEOS-Chem. Therefore, we 

produce the ensemble simulations by running a single GEOS-Chem, instead of GEOS-Chem ensembles, which significantly 

saves the computational resources (acknowledgment to Dr. Fuqing Zhang for the idea, personal discussion).  
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 100 

To simulate the atmospheric CO2 concentration evolution, GEOS-Chem is forced with the SCF, including land-atmosphere 

fluxes (FTA), ocean-atmosphere fluxes (FOA), and fossil fuel emissions (FFE). The total SCF at each model grid point is the 

parameter to be estimated in the COLA.  

 

2.2 Four Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) 105 

Following Liu et al. (2019), we used the four dimensional Local Ensemble Transform Kalman Filter (LETKF) as the data 

assimilation algorithm. The LETKF algorithm is an Ensemble Square Root Kalman Filter developed by Hunt et al. (2005, 

2007). It is widely used for data assimilation, including several operational centers, and it has been applied in the joint state 

and parameter data assimilation problems (Ruiz et al., 2013), such as carbon data assimilations (Kang et al., 2012, 2011). Same 

as the other EnKF algorithms, LETKF combines background (model forecast) and observations based on their error covariance 110 

statistically to generate the analysis with reduced uncertainties. The background and analysis error uncertainty are represented 

by the perturbations of background (𝐱𝐛 = 𝐱𝐤𝐛 − 𝐱%𝐤	𝐛 )and analysis (𝐱𝐚 = 𝐱𝐤𝐚 − 𝐱%𝐤	𝐚 ) ensembles, respectively. Where 𝐱𝐤𝐛 and 𝐱%	𝐛 

are the background and its mean, respectively; 𝐱𝐤𝐚  and 𝐱% 	𝐚 are the analysis ensemble and its mean, respectively; 𝐲𝐤𝐛 and 𝐲%	𝐛 

are the forecast observations and their mean, respectively. The 𝐲𝐤𝐛 = 𝐇(𝐱𝐤𝐛) projects the background from the model space to 

the observation space with the observation operator 𝐇. The overall LETKF algorithm is summarized as follows, 115 

𝐱% 	% = 𝐱%	& + 𝐗	&𝐰- 	                    (1) 

𝐰-	 = 𝐏/	%0𝐘	&2
𝐓𝐑	(𝟏0𝐲	𝐨 − 𝐲%	𝐛2                  (2) 

𝐏/	𝐚 = [0𝐘	𝐛2
𝐓𝐑	(𝟏0𝐘	𝐛2+(K − 1)𝐈](𝟏                 (3) 

𝐗	𝐚 = 𝐗	𝐛[(K − 1)𝐏/	𝐚]
𝟏
𝟐                   (4) 

Here 𝐗	&𝐰-	 is the analysis increment applied to each ensemble member, with R denoting the observation error covariance, 120 

𝐏/	% is the analysis error covariance, K is the number of ensemble members, 𝐈 is the identity matrix. LETKF simultaneously 

assimilates all observations within a certain distance at each model grid point, which defines the localization scale. Hunt et al. 

(2005) introduced a four-dimensional version, and (Hunt et al., 2007) provided detailed documentation of the 4-D LETKF that 

we are using in this study. 

 125 

Previous work has shown that the LETKF can be successfully applied to estimate SCFs and CO2 concentration simultaneously 

using atmospheric CO2 observations (Kang et al., 2012, 2011; Liu et al., 2012; Liu et al., 2019). The SCFs are treated as 

parameters augmenting to the state vector C (the prognostic variable of atmospheric CO2), 𝐗 = [𝐂, 𝐒𝐂𝐅]𝐓. An EnKF usually 

assumes the estimated parameters as special variables that are stationary during model integration. Therefore, the first guess 

of the parameter is the persistence of their analysis from the last analysis cycle. Though the SCF evolves with time, the 130 
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parameter estimation can still produce decent estimation if the SCF is slowly evolving and the AW is short enough (Ruiz et al., 

2013). We set the AW to 1 day, while a run-in-place method is applied (Kalnay and Yang, 2010) by setting an additional 

observation window (OW) of 6 days. The estimation also benefits from more observations. The overall window (OAW) is one 

week. 

2.3 Constrained Ensemble Kalman Filter (CEnKF) 135 

As previously discussed, the LETKF and most of the ensemble-based Kalman Filter do not maintain the physic bound of the 

state and conservation of physical laws of state dynamic (Zeng et al., 2017). Since the LETKF process destroys the carbon 

mass conservation (Fig. 1), we applied a Constrained Ensemble Kalman Filter (CEnKF) to constrain the global mass of state 

C after the LETKF process. The concept was based on Pan and Wood (2006) that applied the CEnKF to balance the water 

budget for each ensemble member. We further simplified the method by constraining only the ensemble mean state, which 140 

significantly reduced the computational cost without influencing the performance.  

 

The mass conservation is destroyed by adding or reducing mass during DA updating. We can rebuild the mass conservation 

by moving the mass back to their original values (before the DA update). Our target is to retain the global mass conservation,   

𝐌𝐚 −𝐌𝐛 = 𝟎                     (5) 145 

Where 𝐌𝐚 and 𝐌𝐛 are the expected analysis and the first guess global CO2 mass, respectively. The transformation from CO2 

concentration at each grid to a global CO2 mass could be expressed as, 

𝐌 = 𝐇𝐂%                      (6) 

Where H is the linear “observation” operator that transforms the global 3D CO2 concentration to the global CO2 mass. At each 

grid, the operator is proportional to the air mass. Now the question becomes how to distribute the expected global total mass 150 

adjustment to each model grid point. CEnKF achieves this by applying an EnKF steps with the 𝐌𝐛 as “observations” and 

takes the constraint as the “observation” equation. We add the constraint to the common EnKF formula as, 

𝐂%𝐚+ = 𝐂%𝐚 + 𝐄𝐚(𝐇𝐄𝐚)𝐓(𝐇𝐄𝐚(𝐇𝐄𝐚)𝐓 + 𝐑)(𝟏0𝐇𝐂%𝐛 −𝐇𝐂%𝐚2            (7) 

Where 𝐂%𝐚+ is the CEnKF CO2 ensemble mean. 𝐂%𝐚 is the LETKF ensemble mean of CO2. 𝐄𝐚 is ensemble perturbation of 

CO2 after the LETKF process. CEnKF defines the “observations” as the truth with 𝐑 = 𝟎 to meet the mass conservation 155 

purpose. Therefore, the EnKF equation is written as, 

𝐂%𝐚+ = 𝐂%𝐚 + 𝐄𝐚(𝐇𝐄𝐚)𝐓(𝐇𝐄𝐚(𝐇𝐄𝐚)𝐓)(𝟏0𝐇𝐂%𝐛 −𝐇𝐂%𝐚2             (8) 

which is the original EnKF algorithm (Evensen, 1994). The perturbed observation step is not needed with 𝐑 = 𝟎. Note we are 

not using LETKF here because it cannot handle the condition of 𝐑 = 𝟎 (Eq. 3). Generally, CEnKF distributes the global mass 

adjustment to each grid point by taking advantage of the ensemble perturbation 𝐄𝐚 given by the LETKF. The grid with a 160 

larger ensemble spread will likely give more mass constraints. 
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Figure 1: Schematic illustration of the mass imbalance problem. 

 165 

2.4 Inflation 

Inflation and localization are the commonly used techniques to improve the filter performance for EnKF applications. The 

ensemble is expected to underestimate the forecast uncertainties because of the error sources such as limited ensemble size 

and model deficiencies. The negative ensemble variance can degrade the filter performance, and in severe cases, lead to filter 

divergence where the filter will reject the observations. Inflation plays an important role to compensate the negative ensemble 170 

variance, which can be separated into three categories: multiplicative inflation, relaxation inflation, and additive inflation 

(Anderson, 2007; Mitchell and Houtekamer, 2000; Zhang et al., 2004; Whitaker et al., 2008; Whitaker and Hamill, 2012; 

Miyoshi, 2011). We update our inflation strategy from Liu et al. (2019) to better fit the mass conservation requirement. The 

original additive inflation for CO2 in Liu et al. (2019) does not preserve the carbon mass conservation in the atmosphere. 

Therefore, for CO2, we apply the relaxation to prior spread (RTPS) scheme from Whitaker and Hamill (2012), which combined 175 

the relaxation to prior perturbation (RTPP) logic from Zhang et al. (2004) into the multiplicative inflation approach, 

𝐂𝐤𝐚 = 𝐂𝐚%%% + 𝛄 ∙ (𝐂𝐤𝐚 − 𝐂𝐚%%%)                    (9) 

𝛄 = 𝟏 + α ∙ 𝛔
𝐛(𝛔𝐚

𝛔𝐚
                    (10) 

Where 𝛔 is the ensemble spread, α is the scaling factor. In this study, we set α to 0.7. 

 180 

We retained the additive inflation for the SCFs as in Liu et al. (2019) with a slight adjustment. We treat the SCFs as the 

parameter for estimation in our system. However, the SCFs are the boundary forcing with temporal evolution that is missing 

in our dynamic model.  The additive inflation scheme was designed to add the missing uncertainties into the system. It 

prevents the effective ensemble dimension from collapsing toward the dominant directions of error growth (Whitaker et al., 
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2008). Since we do not know about the SCF uncertainty globally and at each grid, we use the priori SCF annual cycle as the 185 

benchmark. For FTA, the added perturbation fields are selected randomly from the SiB3 (Denning et al., 1996). After each 

LETKF process, the ensemble spread at each point is inflated back to the predefined uncertainty by additively adding random 

fields selected from prior SCF within one year centered at assimilation time (Kang et al., 2012; Liu et al., 2019). Instead of 

randomly perturbing the ensembles based on a distance-decaying model (Wu et al., 2013), the additive inflation takes 

advantage of the prior randomness, 190 

𝐒𝐂𝐅𝐤𝐚 = 𝐒𝐂𝐅𝐤𝐚 + 𝚪 ∙ 0𝐒𝐂𝐅𝐤
𝐩𝐬 − 𝐒𝐂𝐅𝐩𝐬%%%%%%%%2                (11) 

Where the subscript k denotes the kth ensemble member, the superscript ps denotes the sampled prior SCF. 𝚪 is the factor 

that rescales the sample spread to the predefined magnitude. We retain the same localization scheme and ensemble size of 20 

as in Liu et al. (2019).  

3 Design of the Observing System Simulation Experiment (OSSE) 195 

3.1 Prescribed fluxes and initial conditions 

The experiments span from 1 October 2014 to 1 January 2018. In this paper, we only focused on the FTA. The FFE and FOA 

are treated as background fluxes that are the same in the prior SCF and true SCF. The FFE is the hourly Open-source Data 

Inventory of Anthropogenic CO2 emission (ODIAC) (Oda and Maksyutov, 2011). It was disaggregated from monthly to hourly 

based on the TIMES method (Nassar et al., 2013). We use a monthly pCO2 interpolated FOA product (Gruber et al., 2019). We 200 

use the daily FTA simulated by the VEGAS model (Zeng et al., 2005) as true FTA. In contrast, we used the daily FTA modeled 

by SiB3 in the year 2008 as priori for all of the years (Denning et al., 1996). Moreover, the priori annual mean is subtracted. 

Thus, there is no inter-annual variation and mean source-sink information coming from the priori FTA. As mentioned in Sec. 

2.4, the priori FTA are used to inflate the FTA ensembles. 

 205 

The initial CO2 condition of the nature run for 1 October 2014 is generated forcing by the true SCF run from 1 January 2014. 

To get the prior ensemble initial CO2 and SCF condition, we established a control run starting from 1 January 2014 using prior 

SCF, then randomly selected from the control run center at 1 October 2014 within 30 days. The ensemble mean initial SCF 

and CO2 conditions are significantly larger than the truth over the northern forest region (Fig. 7). Thus, spin-up is always 

needed in this OSSE or real-world scenario to reach a near unbiased state. We spin up the system from 1 October 2014 to 1 210 

January 2015 to get a jointly stable CO2 state and SCF parameter.  

 

3.2 Pseudo observations 

The specific time, location, and observation error of the actual data are used to generate the pseudo observations. The CO2 

GLOBALVIEWplus v6.0 ObsPack is the primary source of surface data (Schuldt et al., 2020). Since there are few stations 215 
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over Siberia, we included several tower observations obtained by the National Institute for Environmental Studies (NIES) 

(Sasakawa et al., 2010). For satellite data, we used Orbiting Carbon Observatory-2 (OCO-2) data (Crisp et al., 2017). Since 

we are focusing on the CEnKF impact, we considered only the experiments that are based on both surface and OCO-2 

observations, and the influence of the two different observation networks is not considered. We plan to address the potential 

effects of such differences in future studies. 220 

 

The observation error is an essential part of the assimilation. Generally, the error is the sum of instrument error (RI) and 

representative error (RR). For the surface observations, to estimate RR at each site, we followed Chevallier et al. (2010a) that 

used the standard deviation of the detrended and deseasonalized data as a proxy. Overall, the error ranged from less than 0.1 

ppm at the south pole (SPO) to over 10 ppm at some tower stations (Fig. 2).  225 

 

The original OCO-2 sampling pixel is relatively small (~3km) compared with the model grid size. Moreover, there are around 

four hundred soundings along every latitude. Thus, appropriate data thinning and filtering are necessary. In addition, the 

retrieval error needs to be estimated. We used a post-processed OCO-2 level 2 data based on a new exponentially-decaying 

error correlation model with a length scale computed from airborne lidar measurements (Baker et al., 2021). Since ocean glint 230 

observations have system bias compared with land observations (Crowell et al., 2019), only the land nadir and land glint data 

are assimilated (Fig. 3). 

 

 
Figure 2: The location of the pseudo surface observations. The dots are the GLOBALVIEW-CO2 observations, and 235 

the pentagram is the AMES tower observations. The different colors represent the representative error of each 
station. 
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Figure 3: The daily pseudo OCO-2 land-nadir and land-glint retrievals numbers along the latitudes. 240 

3 OSSE results 

In this section, we present the seasonal cycle (SC) and inter-annual variation (IAV) of FTA estimated by the improved COLA 

system. Then we systematically investigate the impact of CEnKF on the estimation of FTA and CO2 on the annual scale by 

comparing with an experiment without CEnKF (Table. 1). 

 245 

Table 1: Summary of the experiment setup. We conducted two different experiments using different assimilation 
schemes of LETKF (L) and LETKF together with CEnKF (LC). There is no inter-annual variation (IAV) and annual 
mean source and sink (AMSS) information in the prior. 

 EXP-LC EXP-L 

DA Scheme LETKF+CEnKF LETKF only 

AW+OW 1+6 days 

Ensemble Member 20 

Prior FTA SiB3 (without IAV and AMSS) 

True FTA VEGAS 

 

4.1 Seasonal cycle and inter-annual variation 250 

First, we show the performance of the improved COLA system at the seasonal scale. Globally, the larger SC amplitude of the 

priori is corrected, and the SC phase is fixed too (Fig. 4a). The global or regional analysis root-mean-square error (RMSE) for 

FTA is calculated as follows, 

RMSE/01% = JE2((SCF%(t, reg) − SCF2(t, reg))3)               (12) 
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and the priori FTA RMSE/01
4  can be calculated using the same fomula. We further define the RMSE reduction from priori to 255 

analysis, 

RMSER/01% =
5678%&'

( (5678%&')

5678%&'
(                   (13) 

The RMSER of the global daily FTA is 28% (Fig. 4b). While zooming into the continental regions monthly, the RMSE over 

all these regions significantly decreases (Fig. 5, 6). This reduction ranges from 43% to 90%. Over the North extratropical 

region, where there are dense observations, the reduction exceeds 71%. The most significant error reduction occurs over the 260 

Eurasia boreal region.  

 

Over the tropical and southern extratropical region, the RMSER is smaller. Since there are fewer observations, the accurate 

estimation over those regions is more challenging. However, the SC amplitude and phase are reinvestigated except for Northern 

Africa (NAF) and Southern Tropical South America (STSA). Over NAF, the FTA is close to the prior FTA during the growing 265 

season. Over STSA, the SC phase shows a one-month lag, while the SC amplitude is fixed.  

 

Since the OSSE period covers the 2015-2016 El Nino event, the tropical FTA of the truth shows a large IAV. In contrast, the 

IAV is smaller over the northern hemisphere. The EXP-LC showed that the IAV is well reproduced without leaking from 

tropical to the northern hemisphere (Fig. 5, 6). However, the IAV may leak between adjacent OCO2MIP regions (Crowell et 270 

al., 2019). The IAV is larger than truth over Eurasia Boreal and smaller than truth over Europe from January 2017 to Jun 2017. 

A similar phenomenon also occurs over the North American continent and South American continent. Since there is no IAV in 

the priori FTA, we hypothesis that the IAV estimation could be improved using prior FTA with IAV. 

 

Focusing on the grided scale, the bias of EXP-LC compared with priori is significantly reduced during all the seasons (Fig. 7). 275 

The largest difference of the priori compared with truth occurred over the Northern hemisphere forest region, where the 

seasonal cycle amplitude is large. A significant bias can also be seen from the regional total time series (Fig. 5). Over the 

tropical region, the priori is also significantly biased, especially for Tropical South America and Northern Africa. By contrast, 

the bias of EXP-LC is much smaller and evenly distributed. In addition, its bias is relatively larger during summer than in the 

other seasons. 280 
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Figure 4: a) The global daily FTA of truth (black), prior (grey), and analysis of EXP-LC (red). The vertical line on 1 
January 2015 indicates the start of assimilation. Before 1 January 2015, the system spin-up for three months. b) The 

difference compared with the truth. 285 
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Figure 5: The FTA seasonal cycle (SC) and inter-annual variation (IAV) over the northern hemisphere regions and 
Australia given by truth (black), prior (grey), and estimated from EXP-LC (red). The solid lines with open circles 
marked on them are the SC. The dash lines are the IAV calculated using a 12-month temporal smoother that the 290 

seasonal cycle is filtered out. 
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Figure 6: Same as Figure 5, but for the tropical regions. 

 295 
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Figure 7: The left three columns are the climatological seasonal cycle of the truth, priori, and EXP-LC from 

December to February (DJF), March to May (MAM), June to August (JJA), and September to November (SON). The 
right two columns are the difference between the priori and truth (P-T) and between the EXP-LC and truth (E-T). 

 300 

4.2 The Impact of CEnKF on Annual Flux Estimation  

In the above section, we showed the performance of the COLA system at the seasonal scale. The improvement of CEnKF 

manifested while zooming into the annual scale. To illustrate its impact, we conduct a contrast experiment without CEnKF 

(EXP-L). For EXP-L, the accululation of the annual global imbalances is 0.154, 0.173, and 0.024 GtC for 2015, 2016, and 

2017 (Fig. 8). Such imbalance is not negligible compared with the annual mean FTA of around -1.2 GtC. Moreover, the bias 305 

compared with truth is -0.191, -0.267, and -0.024 GtC for 2015, 2016, and 2017. For EXP-LC without mass imbalance issue, 

the annual FTA estimation is improved with less than 0.06 GtC bias for all the years (Fig. 8). The significantly reduced bias 

indicates that CEnKF could efficiently help the global flux estimation.  

 

Regionally, the performance of EXP-LC is also better than EXP-L over most of the OCO2MIP regions (Crowell et al., 2019) 310 

except Europe, Eurasia boreal, and South America temperate (Fig. 9). Over the Eurasia temperate, Australia, Southern Tropical 

South America, and Southern Tropical Africa, EXP-LC is almost the same as the truth. For both EXP-LC and EXP-L, the 

source or sink is well consistent with the truth. However, the FTA is reversed from a source to a small sink in Northern Tropical 

Asia for EXP-L. 
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 315 

 
Figure 8: The global annual total FTA, imbalance, and Bias of EXP-LC (LETKF+CEnKF) and EXP-L (LETKF) 

compared with truth in 2015, 2016, and 2017. Note that there is no imbalance problem for EXP-LC that there are no 
imbalance bars. 

 320 

 
Figure 9: The total regional FTA of EXP-LC and EXP-L compared with truth from January 2015 to December 2017. 

Fig. 5 and Fig. 6 draw the OCO2MIP region. 
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 325 
Figure 10: The spatial distribution of FTA for truth (a), EXP-LC (b), EXP-L (c) averaged from January 2015 to 

December 2017. The annual mean of the prior FTA is not shown because it is zero at each grid. The bias of EXP-LC 
(ELC) compared with truth (d) and EXP-L (EL) compared with truth (e).  

 

For both EXP-LC and EXP-L, the FTA pattern is well reproduced at the grid-scale (Fig. 10b, c). The widespread carbon sink 330 

over the Northern hemisphere and carbon source over the tropical and southern hemisphere are reproduced. Furthermore, the 

carbon source over the Southern China and the carbon sink over Southern South America are reinvestigated. However, EXP-

L shows slightly better results than EXP2 (Fig. 10c). Over North America, EXP-LC shows a clearer west-east dipole pattern 

compared with EXP-L. Over northern tropical Africa, EXP-LC successfully estimates the carbon source at the side and carbon 

sink at the center. Even though the FTA pattern difference between EXP-LC and EXP-L is not significant, the improved fine-335 

scale FTA estimation indicates that the CEnKF may improve the global to regional carbon budget estimation and improve the 

grided estimation at the annual scale. For both experiments, the carbon sink over Central Russia is shifted northward (Fig 10d, 

e). 

 

4.3 The Impact of CEnKF on the CO2 Estimation 340 

Since the CEnKF is applied to the state CO2, we further analyze the impact of CEnKF on the state CO2 from the DA increment 
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perspective (Fig. 11). After the LETKF process, the CO2 tracers are redistributed horizontally (Fig. 11a, d) and vertically. Then, 

the CEnKF process conducts another redistribution that counterbalances the superfluous LETKF increment (Fig. 11b, e). 

Horizontally, the increment of both LETKF and CEnKF is larger over the land region. The spatial pattern of LETKF increment 

and CEnKF increment are opposite in most regions. However, the magnitude of CEnKF increment is much smaller than 345 

LETKF, which indirectly suggests that the CEnKF assists in improving the assimilation results without overriding the LETKF 

increment. Finally, the global mass of the overall increment is zero, further confirming the benefits of CEnKF in overcoming 

the limitation of LETKF in constraining mass. 

 

 350 
Figure 11: The ensemble mean LETKF and CEnKF increment of the surface CO2 at 15 June 2015 (a~c) and 15 

December 2015 (d~f) for EXP-LC. (g) The global mass imbalance caused by LETKF. The red line is the ensemble 
mean of the global mass imbalance. The grey shading indicates the ensemble imbalance spread. 
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The time series of the global imbalance shows that it is less than 0.03 GtC at every assimilation time (Fig. 11g). The imbalance 355 

is smaller from September to May than the rest of the months, and there is no significant positive or negative bias. From June 

to August, the imbalance is usually positive and more significant than the other months/seasons. At the start of the spin-up 

period, the imbalance is out of the image range. Because of the significantly biased initial CO2 and FTA condition, the CO2 

state is not consistent with the SCF, which leads to the large imbalance. The additional CEnKF process helps the LETKF 

without accumulating the error, and appears to be a reasonable approach to counterbalance the imbalance between state CO2 360 

and parameter SCF.  

 

5 Summary and Discussion 

In this study, we described the development of the COLA system using the CEnKF and improved inflation scheme. The COLA 

system shows improved performance in a variety of OSSEs to assess the spatial and temporal variability of SCFs and CO2. 365 

 

By assimilating the pseudo surface and OCO-2 observations, LETKF could efficiently estimate the spatial pattern of the annual 

mean sources and sinks. However, without mass conservation, the annual global FTA is significantly biased. After the CEnKF 

process, the CO2 mass is constrained without disruption but improving the LETKF estimation. Moreover, the constrained CO2 

state helps improve the estimation of annual FTA from global to regional scale. On the seasonal scale, the improved system 370 

shows compelling results. The biased seasonal cycle amplitude and phase from the priori are corrected over most of the 

continental regions. The estimation is relatively better over the Northern hemisphere, where the observations are dense as 

compared with the other regions with a smaller number of observations.  

 

Because of the sparse observation network over tropical regions, most inversion systems use a very long OAW to track the 375 

tropical fluxes from the remote observations. However, the performance of COLA over the tropical region is also compelling. 

Using a short AW of one day, the problem of lacking a dynamic SCF model is alleviated as the ensembles could be evolved as 

linearly as possible and remain gaussian. Moreover, the persistent forecast model is reasonable using an AW as short as possible. 

Instead of abandoning the error transport property of EnKF and using prior SCF as the first guess in each AW, the SCF 

ensembles could be transported between AWs, indicating that LETKF could learn from the previous AWs and give a more 380 

precise first guess for the current AW without iteration. The future observations in the OW and the ensembles transport from 

previous AW significantly reduce the dependency of very long OAW. As most inversion systems do not update the CO2 state, 

one of the advantages of updating the CO2 state is that the system does not need perfect initial conditions at the start of 

assimilation. After one to three months of free spin-up, the system could create jointly stable initial CO2 and SCF conditions. 

In addition, the update of CO2 at each assimilation cycle could reduce the error from the previous AWs and make the signal of 385 
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the current SCF clearer and more sensitive. In conclusion, the COLA system does not need a very long OAW. 

 

As mentioned in Sect. 2.4, 20 ensemble members could give accurate SCF estimation in the COLA system. In comparison, 

most ensemble-based ACI systems use ensemble members larger than 100 based on the geographic division (Feng et al., 2009; 

Peters et al., 2007). The underlying reason is that the COLA system perturbs the ensembles using additive inflation based on 390 

the priori SCF, which introduces the priori randomness. Thus, there are physical correlations between each grid. While 

perturbing the ensembles based on the distance-decaying model is a widely used statistical method, the choice of the decaying 

length is usually subjective. Moreover, the small ensemble members significantly reduce the computer time. For example, the 

computer time required in the OSSE is about one and half minutes per assimilation cycle using 20 cores of Intel Xeon E5-

2650. Thus, the three years of OSSE only used less than one and half days of computer time. 395 

 

The transport model error is always a big issue in the ACI studies. Several model inter-comparison projects have found that 

the transport model uncertainty is at the same order of SCF uncertainty (Baker et al., 2006a; Basu et al., 2018; Crowell et al., 

2019; Schuh et al., 2019; Chevallier et al., 2010b). Therefore, quantitative transport uncertainty estimation is needed to obtain 

a robust estimate of SCF and provide information to policymakers. The EnKF can efficiently online estimate the transport 400 

uncertainty by perturbing the meteorology state (Kang et al., 2011; Liu et al., 2011; Chen et al., 2019). At the same time, the 

estimation of transport uncertainty needs to update the CO2 state and meteorology state together, which will inevitably cause 

the mass imbalance problem. The CEnKF method proposed here overcomes this limitation and offers a computationally 

efficient way of constraining the global mass.  

Code and data availability. The related code for GEOS-Chem and LETKF can be accessed from 405 

http://wiki.seas.harvard.edu/geos-chem (last access: 18 March 2021; GEOS-Chem, 2021) and https://github.com/takemasa-

miyoshi/letkf (last access: 18 June 2019; Miyoshi, 2019), respectively. 
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